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ABSTRACT

As a typical free boundary problem, a Stefan problem is studied from two

analytical and numerical points of view. In the first one, by changing the

dependent variable which stands for the temperature distribution, the Stefan

problem is transformed into a variational Inequality (V.I.). It is well known

that V.I. can be approximated by a penalized problem. The second one is the

method of the integrated penalty which gives a new interpretation of this

penalized problem. For these different problems, existence and convergence

theorems are given and, moreover, numerical methods to solve them are

presented. Finally some numerical results are given.
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SIGNIFICANCE AND EXPLANATION

We can observe many phenomena involving Free!Boundaries in various fields

of engineering and applied sciences, for example, free boundary problems in

optimum design, the pollution of air and water, the equilibrium of plasma.

For such problems it is important to develop reliable computational methods

which are practically efficient in applications. Naturally, a crucial point

in numerical methods for free boundary problem is how to deal with the moving

boundary. In order to meet this difficulty, various approaches have been

proposed; they can be classified into two groups. One of them is to follow

the free boundary directly. The other is to tranform the original problem

into an auxiliary problem with a fixed boundary. w technique uses the

penalty method and falls into the second group.

In this paper we apply this method to the Stefan problem which arises in

the analysis of melting of ice adjacent to a heated body of water. The

essential idea of ouf method is to transform the Stefan problem into an

Initial-boundary value problem for the heat equation defined in a cylindrical

domain, occupied jointly by water and ice, with an artificial heat absorbtion

in the ice region. Ouf formulation is closely related to the approach using

variational inequalities. Acce!ion For
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NUMERICAL ANALYSIS OF A STEFAN PROBLEM

H. Kawarada and C. Saguez

INTRODUCTION

Free boundary problems appear in various fields of

engineering and applied sciences, for example, problems

in mechanics of continuous media, the equilibrium of

plasma, the pollution of air and water and others.

Here we restrict our interest to systems of Stefan type

where exists a change of phase (solidification, lique-

faction, sublimation...)

So, we consider a problem of Stefan type (Pr)0 in

one dimensional space. For this problem, we introduce

successively i) a variational inequality (V.I.) by

changing the depending variable of (Pr)0; ii) a first
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penalized problem (Pr)1 , which is directly introduced

from (Pr)0 by means of the method of integrated penal-

ty; ii) a second penalized problem (Pr)2 by changing

the depending variable of (Pr)l, which arises as a

penalized problem associated with (V.I.). The plan is

following:

Introduction

1. Formulation of the problem and associated varia-

tional inequality

2. Introduction of the penalized problems (Pr)1 and

(Pr)2
3. Some results of existence, uniqueness and conver-

gence

4. Proofs of Theorems

5. Numerical results

6. Conclusion

1. FORMULATION OF THE PROBLEM AND V.I.

We consider a one phase Stefan problem in one dimen-

sion. O(x,t) denotes the temperature of the solid

and x =s(t) is the equation of the free boundary.

For simplicity, we take all physical constants equal

to 1.

The problem (Pr)0 is to find [O(x,t), x= s(t)}

such that:

ae -2
(1.1) x 0x< s(t), 0< t<T,

ax

(1.2) 0(0,t) = f(t) 0 < t< T,

(1.3) e(s(t),t) = 0 0<t<T,

(1.4) e(x,0) = e0 (x) 0<x<b,
ds ae

(1.5) - 6 (s(t),t) +h(t) 0< t<T,
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(1.6) s (0) - b

where f(t), h(t), e0 (x) and b are given. The term h(t)

in (1.5) can represent, f or example, a heat source
along the free boundary. Such a phenomenon can be ob-
served on the heat shield of a space capsule during the
entry phase in the atmosphere or in the continuous
casting process taking the convection in the liquid

into account (8].

Here we assume:

in [0,T],

h M)E C I(0,T), 0 <h(t)<* in [0,T],

(Al) 0 < b < +-,

a0 (x) C- (0,b), 0 0(b) 0, 0 < a0 (x) iY

in 10,b],

f(0) = 6 (0).

00

We denote by %'(x,t) the extension of e(x,t) by zero on
the region (s(t)< x< RotO 0t<T). We introduce the

new variable y(x,t):

(1.7) y(x,t) = JR OW(&t)dE.

*CMT (,T), m integer, 0<-r< 1, is the space of m

tim~es continuously differentiable functions in

(0,T) , such that the m th derivatives are H8lder
continuous with exponent T.

*The condition h(t), 0 can be relaxed.
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Noting that, by the maximum principle, W(x,t)> 0, we

deduce:

(1.8)- + h t) < 0 in 0 < t < T.

Then, after some calculations, we prove that y is

solution of the following variational inequality

(V.I.): ([1ll C. Saguez)

To find y e L2 (0,T; H 1 )

t C- L 2 (0,T ;L 2 (0)

s(t)e H 1(0,T),

=(0,R 0)

such that

(1.9) (i~ -y) + a (y,c -y) > (- ds + ht W -Y)

+ f M)((0) - y(0, t))

p K { & H 1 (S) ;*(R) = 0, ~ 0 a. e. in a)},

(1.10) y(x,0) = y0(x) R J 0 ( )d ,

(11)s Mt = Inf (x y (x, t) 0}, 0<t <T,

1s(O) = b

where (u,v) =o Ju(x)v(x)dx, a(u,v) = foa-aXdx

and W(x W W6~ 0 <x <b,
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This inequality differs from an ordinary variational

inequality by the presence of the term -! + h(t) indt
the right member of (1.9), together with s(t) which

is defined in (1.11). An inequality of similar type

was studied by A. Friedman-D. Kinderlehrer [3] and

Nguyen-Din-Tri (101. A complete study of (1.9)-(1.12)

is presented by C. Saguez (111.

2. INTRODUCTION OF THE PENALIZED PROBLEMS (Pr)I

AND (Pr)2
2.1 The method of integrated penalty

Here we give the principle of the method of integrated

penalty introduced in [6] by one of the author.

Originally, the penalty method has been widely used

in optimization problems with constraints. It is also

a convenient tool for the study of partial differential

equations (see for example J.L. Lions [9], H. Fujita

and N. Sauer [4]).
Now let us consider the following penalized

problem defined in T = (0,R ) x (0,T):

for any c >0,

(2.1) anr 7- (X t)W i= - x (x,t) in T,

(2.2) i (0,t) = f(t) 0<t<T,

(2.3) wf (Rl 1 t) 0 0<t<T,

(2.4) V (xO) - 0 (x) 0<x<RI,
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where X=X(x,t) in (2.1) is characterized by the moving

boundary x= % (t) such that:

(0)0 in QT = f(x,t) ; O<x< p(t), O< t<T}

x(x,t) i1 (1 _ Q_ (O)
i inT 0T -T

We assume that x= (t) is sufficiently smooth in (0,T),

0< (t) < R1 (0< t< T) and p((0) b. The problem (2.1)-

(2.4) has a solution g ' H2 '(QT)*.

We easily verify that as £ * 0, € converges to a

function n strongly in H1(Q 0)) and converges to zero

strongly in H (QTI)** In fact, 0 e C2,(QT0) is the

unique solution of the following initial boundary value

problem:

0 2 0
(2.5) 0-- =  2 in Q( 0 )

at ax2T

(2.6) (0) (Ot) = f(t) 0< t<T,

(2.7) 0 (4(t),t) = 0 0< t< T,

0(2.8) ir (xO) = 0o(x) 0< x< b.

We define:
1(2.9) = (x,t) = (1 Exr) (x,t) in 0T'

• Hm'n(OT), m, n, integer, is the Sobolev space:

2 2
cL2 (T , Dlx e L(OT) (0 <U.1M) ,

{y 2 (0T <L2

D ¢6L2 (QT) (0 y~n)}.

* H'(QT) HI'i(QT)
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(2.10) q= qC(x, t)= p (t)d& in

Then we have:

Proposition 2.1 Let c-0

(2.12) p - 4-W((t) t))(1-(xt)) in T)

The proof for the elliptic case was given in [6]. If

we repeat almost the same arguments as in [6], we can

show (2.11)-(2.12).

The term q is now called the integrated penalty.
qC((t),t) approximates the flux of T 0(x,t) through the

moving boundary x= (t).

2.2 The first penalized problem

H. kawarada and M. Natori [51 transformed (Pr)0 into

an initial boundary value problem defined in a cylin-

drical domain occupied jointly by water and ice for the

heat equation with an artificial heat absorption in the

ice region; we have the Problem (Pr)1 ;

To find: 6e G H2 ' 1 (QT) n Cl 0(5T)*Ic
S c C (0,T)

OT = (0,R0 )x(0,T)

* Cm'n(QT), m, n integer is the space:

{* C(UT), DpXr6C(UT) (0<Ul<m), De C(QT)

(O y, n)).

-7.-
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such that: for any c > 0,

(2.13) - a 1
ax

(2.14) a (Ot) = f(t) 0 <t <T,

(2.15) -L--(R0,t) = 0 0 <t <T,

(2.16) B£(x,0) = '0 (x) 0 <x <R0 ,

ds_ R0 1 0)

(2.18) se(0 ) = b ; sE (t) <R 0 for any tr [0,T].

(0 inO0 <x <s (tW, 0 <t <T,

(2.19) Xc = X€(x,t) = 0

in s£(t) <x<R0 0<t<T.

1 c
The presence of the penalty term -- XE in (2.13) can

approximately replace (1.3) if e is sufficiently small.

Further we should note that the integrated penalty of
ae(2.17) approximates --L (s(t),t) owing to propositionax2.1.

As a practical application of this method in the
two dimensional case, we refer to a study of the be-

haviors of frozen soil in a neighbourhood of an
underground storage tank of LNG (Liquid Natural Gas),

which is kept at the temperature of -162*C. A program

of this method was worked out and was established for

practical uses by I. Yanagisawa (13].
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2.3 The second pnalized roble-m

Let us use the similar 
transformation as in (.)

we define;

(2.20) YE (x,t) 08CE= ~ C

By integrating the equation 
(2.13) onl (0,%)), we

obtain:

E 2~ c 1 fROEd
(2.21)- i l KY- 

)o(&t)a

(22)at -ax 2 iX

tiow we have:

1 1

(2.22) C ~ Ixx6~=-~-~ X(,~~

If S'~S (t)< , <R

0

(2.23) ?'Xd (,t

I IRO



1 C C 1 C(2.26) AC y (s Wt ,t) (1 - x C +C y (X,tQ

C C

(s(t), -X E(y -(xt)))S(t,)

dsC 1C dSC

Thus we have the following nonlinear problem: (Problem

(Pr) 2 )

To find I Crz C 2 ,1 (QT l

SE C C 2 (0,T)

such that:

C 2C c C
(2. 27) 2!= a + -(y -C E ds-h))- ds' ~+h inQat1 C ds ds

ax

(2.28) ax (O ,t) = -f(t) 0< t < T

(2.29) y E(R 0 1 t) = 0 O< t<T,

(2.30) y C (x,0) = y0(x 0 <x< Rol

dtC

(2.32) s E(0) = b.

3. SOME RESULTS OF EXISTENCE, UNIQUENESS AND CONVERGENCE

Theorem 3.1 Under the assumption (Al), (Pr) 1 has

a unique solution (8C s C(t)l which satisfies:

-10-



s C M:C- 1(0, T)
Theorem 3.2 Under the assumption (Al), (Pr) 2 a

unique solution (y~ , s~ Ct)) which satisfies:

y ". > , y E 21 (T'

1 -C2(,)
Theorem 3.3 Under the assumption (Al), let E'- 0,

thnesolution , {y (t)} of the(V ) uconere that:

thnesolution e ~ s(t) f te of() 2  conere toata

)y£ .,O weakly in L (0,T ;H2 (a)

ii) s~ C s 0 weakly in H 1(0,T),

o 1
s-I- s strongly in C (0,T)*, (0 < -r <)P

Theorem 3.4 Under the assumption (Al), let F-- 0,

then the solution (6 C ; s~ C(t)} converges to the unique

solution of (Pr)0, such that:

i) a - O weakly in H 1 (QT)

o (-,t) * O0(*t) strongly in L 2(Ql)

for any t e [O,T];

s c 8 weakly in H1(,)

8 0 strongly in C (0,T), (0.T < 1).

C (0 C,T)BC (0T



WO is the zero-extension of 80 into Q1

Theorem 3.5 Under the assumotion (A.1), the (V.I) has

unique solution y0E 3 (QT) and s 0 (t)=Inffx;y 0 (x,t)=0}

E C I(0,T).

By means of Theorem 3.3, we conclude that (Pr)2 is

interpreted as a penalized problem associated with the

(V.I). Therefore we have a parallel structure, one

level of which is a penalization with respect to (Pr)0

and the other level is with respect to the (V.I).

Thus we have the general scheme:

Method of integrated penalty

(Pr): (P r)

(1.1)-(1.6) I(2.13)-(2.19)

y (X,t) = W(&,t)d& (X, t) = ( ,t)d&

fx °x

V.I: (Pr)2 :

(1.9) -(1.12) (2.27)- (2.32)

-12-
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4. PROOFS OF THEOREMS

4.1 Proof of Theorem 3.1.

We put:

R6 b +Jf 0 (x) dx + C1 (b,T) +BT,

e E

and

C 0 =sup(a,-Y).

The constant C 1 (b,T) is defined in the appendix I.

Define a convex set K 1 in CIO,T]:

K = {GE C CO,T] ; b < 0(t I) 0(t2)< R 0

for O< t1 t< T and 10(0) b).

First let us study some regularity properties of a

solution of the initial boundary value problem (2.13)-

(2.16), in which the characteristic function XE is

replaced by:

X8 X (xt) 0 inO0< x <s(t) , 0O<t <T,

S kX 5 x~) {1 in s (t) <x <Rol, < t <T,

for some s(t)e K1 .

For simplicity, we denote this problem by (Pr) .

Proposition 4.1 (Pr)_ has a solution 6 which satis-

fies:

(4.1) e & ,1(

-13-



(4.2) 8 6 C 1 ' 0 (Q ).

Proof It is easy to prove the existence of the

solution 8 6 H2 (QT ). Here we focus on the proof of

(4.2). Let us introduce a function X 6e C I(R ) for some
6 (0, 6 0 ]1 (6 0 > 0) such that:

i) > 0 for &eR

ii) X = 0 0)

> 0 (0< < 6),

1 (6 <

Obviously, X6 (x-s(t))+X in L 2 (0 as 6- 0. Let 0 be
the solution of the initial boundary value problem, in

which X. of (2.13) in (Pr), is replaced by X6(x-s(t)).

6 2,1 38 6 a 2a6
That is to say, 6 C2'I(QT) satisfies __ -- 261 6 6 ax

- 1 X (x-s(t))-e in QT' If we refer to Theorem 4.1 in

§4 of chapter V in [7], we have:

Le 6 (x 86
(4.3) _- - 1X1t ) - - (2t 2

< Cs{ixl-x21+ itl-t 2 Ic/ 2 ,

for any (x1 ,tI) and (x2 ,t2 ) EQT,

(4.4) Max ae-(x,t) < C

(x,t)EQT

Here we should note that C5 , C6 and a do not depend on

6 e (0,60. By the theorem of Ascoli-Arzela, it follows
that there exists a subsequence, still denoted 86,

such that:

-14-



(4.5) a 6 in C(5T)

ae6  ae
(4.6) in C(Q T ), when 6 - 0,

which implies (4.2).

Proposition 4.2. The solution e=6 (x,t) of (Pr),

has the following estimates in QT:

(4.7) o < < co  in

(4.8) 01(-,t) 2dx C2  for any t E(0,T),

(4.9) JJ I 2 dx dt < C,

QT

(4.10) fI dxdt < C4 '
QT P

where the constants CO, C2 and C3 are independent of £,

but C4 depends on e. All the constants CO , C2, C3 and

C4 are independent of s (e KI).

Multiplying both sides of (2.13) by YE and inte-

grating in OT, we easily obtain (4.8) and (4.9). Here

we used (I.10) in the appendix I. By (4.8) and (4.9),
we have (4.10). By using the maximum principle, we

easily prove (4.7)

Now we define a transformation A such that:

(4.11) s 6 K1 - r - A s

(4.12) r = r(t) - b+1 0[ O(xse) (t,T)dUd

+ hlr)dT,

-15-



where 8 is the solution of (Pr)s .
Let us verify some properties of A.

Lemma 4.1. For any s eK I ,

(4.13) As GK1 .

Proof First, we easily prove that r(t) satisfies:

b < r(tI) < r(t2) for 0 < t I  t 2 < T

because 0 > 0 and b > 0.

Next, by an integration of the equation satisfied by 6

in Qt, we obtain:

(4.14) f06,(t)dx+ f(fO(Xx%6) (x,T)dx]dT

f< (x)dx+ Max -ae6 T,0) in 0< t<T.

Note that the last term of the right side of (4.14) is

estimated as follows:

(4.15) Max l(t,0) C (b,T) for any 6e(0,60].

The proof of (4.15) is given in the appendix I. Let

6.0 in (4.14), we have:

(4.16) 1 J ROJ(Xs8) (x,)dxdr < ba(x)dx+C (b,T)

for 0<t<T.

Then, by (4.12) and (4.16), we have (4.13).

-16-

• L&I



Lemma 4.2. A is continuous in K .

Proof Let O(resp. ') be solutions of (Pr)s

(resp. (Pr) s) for s,s'6 K and let r=As and r' =As'.

We have:

(4.17) Ir-rIc-,T] Tjs- s'IC[0,T]

+ -R
EoIB-BIc(-T)*

On the other hand, we have:

(4.18) le-e'Ic( T) . _,F 0  Iss'IC[o,T]"

The proof of (4.18) is given in the appendix II. With

(4.17) and (4.18), we easily obtain the continuity of A

in K.

Lemma 4.3. A is compact in K1 .

Proof From (4.12), we have:

(4.19) dr = 1 (X ) (s,t)dx+h(t) in 0<t<T.

Then:

(4.20) <dr < C in 0< t< T,

Which implies the compactness of A in K1 .

Proof of Theorem 3.1 K is a bounded, closed convex
1

in C[0,T]. By the Lemmas (4.1)-(4.3), we see that A is

continuous compact from K1 into itself. Then we can

use Schauder's fixed point theorem. So there exists,

at least, one fixed point s e K1 such that:

-17-
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(4.21) s = As in K1 .

Thus (Pr)1 has, at least, one solution which sat-
2,1 10- 1isfies r H(T ) EC' 0(QT ) and x=s(t)eC (0,T).

The uniqueness of the solution of (Pr)1 will be proved

at the end of the proof of Theorem 3.2.

4.2 Proof of Theorem 3.2.

Let f8(x,t),s(t)} be the solution of (Pr)1. If we

refer to the paragraph 2.3, then:

(4.22) y = y(x,t) = RO(Et)dE > 0
fX

and x=s(t) satisfy (Pr)2 . Because of yEC 2'0 (QT) and
se C 10,T], we see that:

(4.23) G C(QT).

Furthermore, we have:

d2s =1 2(s(t),t) ds 1 + dh

(4.24) - dt + Z _ (s(t),t) + d
dtI E ax dt~

in 0<t<T
which implies:

(4.25) s e C 2(0,T).

Therefore (Pr)2 has, at least, one classical solution
2,1 2 2{y C2'I(QT); x= s(t) e C (0,T)1.
Suppose that (Pr)2 has two solutions {yi;si(t)l

for i= 1,2. Let us estimate the difference between
8sI  ds2s 1and -s2 we have:

-18-



(4.26) 1 ds, d~ 11yl (sl (t) I t) y(S 1 W)It)I

+ Ely 2(sl(t),t) -y2 (s2 (t),t)j

i El Y 21C (5T)

+ lajC(Q)iS-

ax 5 ll 2 j,]

Because

(4.27) C(Q2 < CO,

we have 
d 

s
(4.28) s -ds

+CO

E~ s S
1  s2l [0 TI

We have the following inequality (see the appendix M):

(4.29) 1yl- Y21 - C( llT)~
C (;5) JE C (&T)

+ 2'- )tI(OT dt.

Fromk (4.29), we obtain:

(4.30) - 2T 0 c 1ds, ds 2
1 COQT 0 -T 0  r- - IC[O#T0

for O<T 0< E.

-19-



Using (4.28) together with (4.30), we have
dSl1 ds 2

(4.31) d yd
[OT 0 ] 

2T0  CoT0 ds, ds2
- 0 e CT t- & 'C[0,T 0]

for 0< T0 < e.

Choose T0 =T 0(e) to satisfy:

2T0  C0 T0  ]
(4.32) 0 < -- + - < 1 for any c> 0.e-T 0  E

That is:

(4.33) 0 < T0 (e) < Inf{2e0(3+C 0 -/C 0 +2C 0 +9),E}.
0 30

Then we have a contradiction and we deduce

dsI  ds2  t
(4.34) at) = -a-(t) in 0<t<T0(E).

Because s1(0) = s2(0)= b, we have

(4.35) Sllt)= s 2 (t) in 0<t<T 0 (E).

With (4.33) and the same procedure {jy[ -] +1} times,
We obtain:

(4.36) sl(t) = s2(t) in 0<t<T,

which implies:
(4.37) Y1 (x,t) = Y2 (x,tl in

Thus this proves the uniqueness of the solution of
(Pr)2. From this uniqueness, we easily obtain the

-20-
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I

uniqueness of the solution of (Pr) . Let {81 s1(t)
and {82 1 s2 (t) be two solutions of (Pr)1. Then

Y 1 f R0e(E't)dE and Y 2 
= JR082( ',t)d

satisfy (Pr)2 " From the uniqueness of the solution of
(Pr) 2' we deduce:

(4.38) 1(t) = S2(t) in 0< t<T.

On the other hand, we have,

(4.39) R 00 ( 1 (,t) -e 2 (E,t)dE = 0

for any (x,t)EUT-

If we differentiate (4.39) with respect to x, we have

(4.40) e1 (x,t) - e2 (x,t) in

4.3 Proof of Theorem

Here we denote by {yC ; sC (t)} the solution of

(Pr) 2
2£

Lemma 4.4. y verifies the following estimates:

(4.41) -c ay < 0 and o < ye < CoR in QT

tRo 2 e 1
(4.42)o - .,t1 dx < C2  for any t C(0,T),

(4.43) f-yI121dx dt <

t -21-



4.44) a 2  dxdt C4.
OT a

We easily obtain (4.41)-(4.44) from (4.7)-(4.10) in

Proposition 4.2.

Lemma 4.5. s (t) verifies the estimate:

(4.45) ds (0,T) - C7

where C7 is independent of I.

Proof From (2.27), we have:

dsE  C
(4.46) = h- 2: + a in 0< x< s (t),

ax
0< t <T.

From (4.46), we have

(4.47) b -- dt < 3 [ dx dt

+ f f IfI dx dt

2
+ R0-T-821

0

By (4.42), (4.43) and (4.47), we deduce:

(4.48) d"'CIL2 (0,T) 2 " 7 "

Lemma 4.6. If .0, then (y ,x=s (t)) converges to

#a M (t)1 in the following topology:
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(4.49) s E~ S0 strongly in L 2(0,T),

strongly in CT (O,T), (0 <t)

(4.50) ds' ds 0  weakly in L 2(O,T)i
UETt -

S 0 2
(4.52) -y strongly in L (

ax axT

(4.53) a'- 2 c a weakly in L 2(0,T; L 2(0,R))
ax ax

(4.5) ayC . y 0 weakly in L2(1; L 2 (,
(4~54) at L(~T (, 0 )

Define a convex set K 2 such that

K = {or, L 2(Q2) ; 0 > 0 a.e. in Q)}.

if we multiply (2.27) by (0-y Y), *eK 2 , and integrate

in Q T' then we have:

(455 J(2.. , -yE:)dt - JT ~,-y E )dt

- T J((y E+5a) 0, C-y)dt (a E'- K2.d

Where a =--+ h(t).
E dt

Now, using the monotone property Of (Y C +Ea C

and because OeK 2 ' we have:
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(4.56) - +ay
1 C
= l -_(y +E£a )- (y +E:a£)

-C E

- y+ca )-,a)

S<-((y +E a )-,a )

Using (4.45), we have

2(4.57) Ea € - 0 strongly in L (0,T) as c - 0

By (4.51) and (4.56), we have

(4.58) (y +cac)- (y 0 ) 0 strongly in L2(Q)

as E - 0

From (4.58), we have

(4.59) ((yca )-,a )dt - 0 as c - 0

Therefore, using Lemma 4.6, (4.56) and (4.59), we

obtain at the limit in (4.55):

(T a 0 fT a2 0 0
(4.60) j( ' 4-y )dt - (--'- ,-y )dt

T 00

0 (a 0 ,o- )dt.

Here a0 =- -7- + h. The partial integration of the

second term of the left side of (4.60) yields (1.9).
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4.4 Proof of Theorem 3.4.

For simplicity, we assume f E in (0,T).

C C

Step 1; convergence of 6~ and s

We already proved the convergence of s E (t) in

Lemma 4.6. From Proposition 4.2, we can extract a

subsequence, still denoted e 8 such that:

(4.61) 6 C w weakly in H1 (QT),

0 E: w strongly in L1 O

and we have ((4.8) Proposition 4.2):

(4.62) RfoI w(.,t)1 jdx < CVt C (0,T).

Define:

Ql 0 t) =(x; Ox<s (t)) (0<t<T),

0 0
S) Qt - (t),

0<t<T

and U4 n ()
T 0't<T

Lemma 4.7. The function w satisfies:

(4.63) wI 0 6 L 2(0,T; H 0(t)

(4.64) WI 1  0.

Proof First we prove (4.64). We have.
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(4.65) fJ xceC12 dxdt < c'C8 ,

where C8 is independent of c. From (4.59) and (4.61),

we get

(4.66) IfQ 1 jwj
2 dxdt - 0

By using (4.62), we have

(4.67) lw(x xt) -w(x 2 ,t)d < dx

11

2 1 2 2<C2 Xl-X2 Jx2 VxIX 2 (0,R0 ) , Vt E(0,T) ,

which implies, with (4.64)

(4.68) WIx=s0 (t) = 0 Vt E(0,T).

Since we H1 (QT), we have (4.63).

Lemma 4.8. w 1 0 satisfies:

T

(4.69) L- 0 dx dt + k L d x dxdt = 0

T T

10

Proof For any €, we can define C such that:

i) C E H",0(QT) ; ii) C (O,t) 0 (tc(O,T));

i) X =E (P 0 inOT
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iv) * strongly in L2 (QT) and

strongly in L2(QT)  when E- 0.
a1

Here denotes the zero-extension of 0 into T If we

multiply (2.13) by 0 E and if we inteqrate in QT we have:

(4.70) at 0ax ax
j T if xt+JT

at

At the limit, we obtain,

(4.71) j T- dxdt + 2JQ- a- dt = 0.

Now let us consider the following initial boundary

value problem (Pr) 0;
S

a- = a E in QT0

8(0,t) = 0 O< t<T,

e(s 0 (t),t) 0 O< t<T,

B(x,0) = 80 (x) 0<x<b.

1

Here we should note that s 0 C 7(0,T). Refering to

Friedman [21, we easily obtain that (Pr) s0 has the
0 2,1 0unique solution 6 C'(QT) which satisfies

0
ax (s (t) ,t) C C (0,T).

Lemma 4.9. w satisfies:

(4.72) w(xt) = 80(xt) a.e. in 0
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Proof Put W=w- 8. Then W verifies:

(4.73)0 !JO dxdt + f QT0 I A dxdt =0

V#eL 2(0,T ; H0(nM00(t))).

Put O =W in (4.73). Then

(4.74) 1-W(',T)i 2 + a-x dxdt = 0,
T

which implies (4.72).

We modify w on a null set so that (4.72) holds for

every (x,t) in QT' i.e., w(x,t) =- (x,t).

Step 2; 0(x,t) and s 0(t) satisfy the Stefan condition

(1.5). Define

JR
(4.75) q = q C(x,t) = S 0 i(x 9 E) ( ,t)d&.

fx

Lemma 4.10. If E- 0 , we have

(4.76) qc-.% -e( (t) ,t) (1- x (x,t))x

weakly in L2 (QT).

Proof From (2.12) (Proposition 2.1), we obtain

C 0 0 0(4.77) q - (s (t),t) (- x (x,t) An & (OT)

From (4.7) (Proposition 4.1), it follows that:

ds£ Zq
(4.78) - - h =q (0,t) > q£(x,t) > 0 in
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then we have:

(4.79) fqCi2C) < ,/0 (C7 + 2(/

With (4.79), (4.77) implies (4.76).

Finally we show that e0 and s 0(t) satisfy the

Stefan condition (1.5). From (2.17), we have:

(4.80) -ast 1 -X) = (1-x ) +h(l-x ) inQT"

Integrating (4.80) in Qt (0< t<T) and passing to the

limit, we have:

(4.81) dxdT = -2--(s. (T)' dxd-r

t

+ ffQ0
t

Here we used (4.76). By Nikodym's theorem, we have

aes0  0 ;
(4.82) s 0 (t) = b- - -S (s),)dT + h(T)dT.fo ax J
Since Lel (s 0 (t),t) EC[0, TI, (4.82) implies (1.5) .ax
Because of the unique existence of the solution of

(Pr)0 , all the sequence {8 (x,t),s t (t)} converges to

{e (xtt),s (t)}.

4.5 Proof of Theorem 3.5.

From Theorems 3.3 and 3.4, we have:

e W 0 strongly in L2 (OT)

and ay- ax strongly in L2 (Q)
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Since

(4.83) = c a.e in Tax T

we have

(484) -- a.e in OT.
ax

We obtain
1

(4.85) 0 Z y C (R0 ,.) = y (R0 ,.) E H2 (0,T).

From (4.84) and (4.85), we have

(4.86) y0(x,t) = JRO0(&,t)d&.

0 0
Since 0 verifies 0< e < C in 0T' we have

(4.87) s0 (t) = Inf{x; y0(x,t) =0} (0< t<T).

Here x= s 0(t) is the free boundary of (Pr)0 correspond-
0 0 00

ing to 0 . {e , s (t) is the unique solution of

(Pr)0 . Therefore the (V.1) has a unique solution.

5. NUMERICAL RESULTS

Here we present the numerical methods used to solve

Problem (Pr)2 and the (V.I). The results concerning

(Pr)1 were presented in H. Kawarada-M. Natori (5).

We use the following algorithms.

5.1 Problem (Pr)2

1) Initialization.

Put Y0  y0 (x), s = b for n=0.
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2 ) i = O , s n =  S n

3) Determine y solution

_______,i n+i -Sn l -

(5.1) -n+l,i-Yn u Yn++ E~ n+i ( n t h n+1
At dx2  at

St

- nfn n

tAt
(5.2 n (0 = -fnfl
(5.2) dx

(5.3) Yn+i (R0 ) = 0.

4) Determine snc , by the expression:

IC, i+l _
n+l tn c (E s + hn+1

i+1- =sd Y+l n+l1 1
Sn+ 1  n+1 n+1

6) Test of convergence;
C C t , i+1 C C, i

If the test is verified, sn+1 
5n+l ' yn+l y n+l

If not, i = i+ 1 go to 3.

7) If n+ I = N (number of step in t), stop.

If not, n=n+l go to 2.

The nonlinear equation (5.1)-(5.3) is approximated by a

finite difference method (or a finite element method).

This problem is solved by an over-relaxation method.

-31-
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5.2 The Variational Inequality

1) Initialization y 0 (W) (x), s0 b for n =0.

2) i-0, n+l f

3) Determine yi solution of:

Snl- ynn+l n+l n+l.

sn+1l n
1 -s hn~ n+l

+ ffl+l W~O) -y n 1 (0)) for any cr K2

n+lY1  CE K2,%,n~l ,n+l4) s. =Inf{x 6 (0,R ) yi Wx = 01
3.0

5) 6) 7) are the same operations as (Pr). The varia-

tional inequality (5.4) is approximated by a finite

difference method (or a finite element method). This

problem is solved by a relaxation-projection method

(R. Glowinski, J.L. Lions and R. Tremolieres [1]).

We tested these methods for the following problem,

in one dimensional case:

T t x2 '

8(0,t) = t + 1

e(SMt)t) = 0
Ne (t)t- 4ds + 2t

e~~o X 2 1+
0 (x 0) (-y 2x + 7)
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The exact solution is:

e(x,t) - 2x + t + 1); s(t) = 2-/ 3-2t

To solve (Pr)2, we took R0 =T =1. We divided (0,R0)

into 30 steps and (0,T) into 20 steps. The results,-3
presented here, were obtained for E = 10 and w = 0.15.
The computer time was approximately equal to 4s on
IBM 370-168. For the V.I, we took 30 steps of space
and 10 steps of time. The coefficient w was chosen to

be equal to 0.3. The computer time was the same or-

der as for the preceding method. The results on the

free boundary were very comparable, which are shown in the

following table:

t Exact sol. (Pr)2  (V.I)

0 0.2679 0.2679 0.2668

0.1 0.3267 0.3303 0.3235

0.2 0.3875 0.3956 0.3845

0.3 0.4508 0.4576 0.4468

0.4 0.5168 0.5290 0.5135

0.5 0.5858 0.5977 0.5832

0.6 0.6584 0.6711 0.6578

0.7 0.7351 0.7488 0.7363

0.8 0.8168 0.8325 0.8196

0.9 0.9046 0.9208 0.9112
1 1.000 1.023 0.9965

We conclude a very good agreement of the numerical

results with the exact solution.

On the other hand, the method of fixed point will
be used. Particulary we notice the utilization of the

method presented in M. Sermange [12).
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6. CONCLUSION

The methods, presented here, have a fairly general

character for the free boundary problems appearing in

the system including change of phase. They permit, in

particular, to take into account heat source along the

free surface and give efficient numerical algorithms.

I
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APPENDIX I

Ist step We shall consider the following initial

boundary value problems (A), (B) and (C):

at = a2e in 0< x<b, 0< t<T,at 3)x2

((0,t) = f(t) 0< t<T,(A)
e(b,t) = 0 0< t< T,

e(x,0) = e0 (x) O<x< b,

aoa _ _2 1 6
a 0 1X (x-s(t))8 in O< x< R,

0< t<T,

(B) 8(0,t) = f(t) 0< t <T,

O(R,t) = 0 0 < t< T,

e(x,o) = W(X) 0< x <R,

t ax 2in 0<x<R, 0<t<T,

(C) 0(0,t) = f(t) 0<t<T,

x(R,t) = 0 0<t<T,

9(x,0) = 0 (x) 0<x<R.

Here R in (B) and (C) is an arbitrary number which
6satisfies R> b> 0. s(t) in X of (B) satisfies

i) seC 00,T) ;

ii) s(t) is monotone increasing in t ;

Mi) s(0)=b, S(T)<R.
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Let e.1 6 and 0 2 be the solutions respectively of

(A), (B) and (C) under the assumption (Al). Then, from

the maximum principle, we have:

(1.1) 0 1 (x,t) 1 e (x,t) e 8(x,t) in 0 < x < b,

O< t< T.

From (1.1) it follows:

ax C 0(O,TI

30 382
- sp{I~1(,t)I 0 1I- -( t) 0sup IaxC (0,T]' (,~ C [O(,T]

2nd step We shall prove that I J-2-(O,t)i is

uniformly bounded for a:iy R (>b).C[0T

We introduce Green's function which satisfies Rt=

(0 < t < T)

N(X,t ; E-R,T) = 1 expf- (x-&+R)2
2V~r -t--)4 (t-tr)

+ 1.i~tt exp{- (X+&-R)

Integrating Green's identity:

a ~(N !"2 _ )32N -(N6 2  0

an the domain 0<&E<R, O< & < -r < t-c and letting c .0,

we obtain:
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(1.3) 2 (R-X,t) JbN(x~t; ;-,) Cd

it a82
-J(x, t ; -R, -0 W (0, -0dtr

+ Jt IN(X,t. -R, 2)f (T) dT

ae0

Let denote v(T)= !62~(0,T). we differentiate (1.3) with

respect to x and x- R-0. We obtain:

(1.4) v(t) - 2f v(T) (R,t ; -R,-r)d-c

+ 2J G(R,t; -R,T)f(T)d-

2 2f G(x,t; ;-,) 0(~

df(T)where G(x,t;E,T)=K(X,t;E,T)-K(X,t;-E,T) and f (f- -
We note that the following inequality holds:

(1.5) -x (Rt ; -R, T) I dT< Af 2  -eydy

where A0is an absolute constant. Taking R sufficient-

ly large so that:

(1.6) 0 < y(R) <1

we have
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(1.7) IVIC[OTI

t
<1-272(R) (I J0G(R't ; -R,T)f(T)d I c[0,T ]  .

+ I G(R,t ; -R,0) 0 (&)d I c[0,T ]

E D (R).

Let R- +-. Then D(R) - D(+-) <+. We see that for any

R which satisfies (1.6), there exists an absolute

constant DO such that:

(1.8) D(R) I D O • 0

Thus there exists some constant D such that:
1i

()vI<D D for any R> b.11.9) 1V CC0,T]

Letting CI(b,T) =Sup{D1 , I-(O,t) I 1,
C[0,T]

we obtain

(1.10) 1 8(Olt) C (b,T)
ax IC[0,T]

for any R>b and any 6 e (0,60 (6 0).
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APPENDIX II

Putting 6 -0' 
=W, we have

(1w.1) w 1 a-iwW10 ,(x Xs,).

Multiplying both sides of (II.1) by 2 and integrating

in Qt we have:

+xROjw 2

(11.2) o 2 dx dt+Jt dx

0[ 0 t 2 wa

< oJo s  X ,  2A 1 dx dt.

Here we used the monotone property 
of s(t). By use of

Schwartz's inequality, (11.2) becomes

jtRO2w,2 
rRojaw(,t

(11.3) d.xd + i~ x,) dx

C0  1/2

C[0,TI (QT)

for any te (0,T).

From (11.3) we have

C1/2

(11.4) 
Is-

atI. 4 I 2 ) C[o,T)

By (11.3) and (II.4), we have:

(11 3 w(x't)12d x 2(-)2T Is c[O'T]"

On the other hand, we have
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(11.6) jw(x,t)j 1 J 1 1dx < /i; f 1OIWt dx

C 1/2

(11.6) implies (4.18).
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APPENDIXfl

Putting yl- Y2 = W' we have

aw =a 2I 1 yla - +:a in

ax

ax(O,t) = 0 O< t< T,

W(B01 t) = 0 O< t< T,

W(x,O) = 0 O< x< R0.

ds.
Here ai=- -a + h (il, 2). Let U (x,~ t; -) be the

Green's function of the linear system;

t) n 0 0 T

ax

u(RO1 t) = 0 0 <t <T.

Then we have

E(y2+ca 2 ) + a1 - a2 Id&.

By (4.29), we have

(M. 1) IW(x,t) I

Noting that
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(M1. 2) J0 U(x,t ; ~td

we have

(M1. 3) IWI(Q) J{IY2 -

0 C(QT)

+ 21 ids C[OT Idt.
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